Hydrodynamic fluctuations in confined particle-laden fluids.
نویسندگان
چکیده
We address the collective dynamics of non-Brownian particles cruising in a confined microfluidic geometry and provide a comprehensive characterization of their spatiotemporal density fluctuations. We show that density excitations freely propagate at all scales, and in all directions even though the particles are neither affected by potential forces nor by inertia. We introduce a kinetic theory which quantitatively accounts for our experimental findings, demonstrating that the fluctuation spectrum of this nonequilibrium system is shaped by the combination of truly long-range hydrodynamic interactions and local collisions. We also demonstrate that the free propagation of density waves is a generic phenomenon which should be observed in a much broader range of hydrodynamic systems.
منابع مشابه
Fluid velocity fluctuations in a collision of a sphere with a wall
Phys. Fluids 23, 107102 (2011) Particle accumulation on periodic orbits by repeated free surface collisions Phys. Fluids 23, 072106 (2011) Drag force of a particle moving axisymmetrically in open or closed cavities J. Chem. Phys. 135, 014904 (2011) Modal and non-modal stability of particle-laden channel flow Phys. Fluids 23, 064110 (2011) The suspension balance model revisited Phys. Fluids 23, ...
متن کاملA Numerical Model for Brownian Particles Fluctuating in Incompressible Fluids
We present a numerical method that consistently implements thermal fluctuations and hydrodynamic interactions to the motion of Brownian particles dispersed in incompressible host fluids. In this method, the thermal fluctuations are introduced as random forces acting on the Brownian particles. The hydrodynamic interactions are introduced by directly resolving the fluid motions with the particle ...
متن کاملA penalty method to model particle interactions in DNA-laden flows.
We present a hybrid fluid-particle algorithm to simulate flow and transport of DNA-laden fluids in microdevices. Relevant length scales in microfluidic systems range from characteristic channel sizes of millimeters to micron scale geometric variation (e.g., post arrays) to 10 nanometers for the length of a single rod in a bead-rod polymer representation of a biological material such as DNA. The...
متن کاملBosonization, vicinal surfaces, and hydrodynamic fluctuation theory.
Through a Euclidean path integral we establish that the density fluctuations of a Fermi fluid in one dimension are related to vicinal surfaces and to the stochastic dynamics of particles interacting through long range forces with inverse distance decay. In the surface picture one easily obtains the Haldane relation, and identifies the scaling exponents governing the low energy, Luttinger liquid...
متن کاملMultiplex Particle Focusing via Hydrodynamic Force in Viscoelastic Fluids
We introduce a multiplex particle focusing phenomenon that arises from the hydrodynamic interaction between the viscoelastic force and the Dean drag force in a microfluidic device. In a confined microchannel, the first normal stress difference of viscoelastic fluids results in a lateral migration of suspended particles. Such a viscoelastic force was harnessed to focus different sized particles ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 111 11 شماره
صفحات -
تاریخ انتشار 2013